enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    In mathematics, a self-adjoint operator on a complex vector space V with inner product , is a linear map A (from V to itself) that is its own adjoint. That is, A x , y = x , A y {\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle } for all x , y {\displaystyle x,y} ∊ V .

  3. Self-adjoint - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint

    Each positive element of a C*-algebra is self-adjoint. [3] ... is the direct sum of two real linear subspaces, ... Operator Algebras. Theory of C*-Algebras and von ...

  4. Linear Operators (book) - Wikipedia

    en.wikipedia.org/wiki/Linear_Operators_(book)

    Linear Operators is a three-volume textbook on the theory of linear operators, written by Nelson Dunford and Jacob T. Schwartz. The three volumes are (I) General Theory; (II) Spectral Theory, Self Adjoint Operators in Hilbert Space; and (III) Spectral Operators. The first volume was published in 1958, the second in 1963, and the third in 1971.

  5. Stone's theorem on one-parameter unitary groups - Wikipedia

    en.wikipedia.org/wiki/Stone's_theorem_on_one...

    The Stone–von Neumann theorem generalizes Stone's theorem to a pair of self-adjoint operators, (,), satisfying the canonical commutation relation, and shows that these are all unitarily equivalent to the position operator and momentum operator on ().

  6. Unbounded operator - Wikipedia

    en.wikipedia.org/wiki/Unbounded_operator

    An operator is called essentially self-adjoint if its closure is self-adjoint. [40] An operator is essentially self-adjoint if and only if it has one and only one self-adjoint extension. [24] A symmetric operator may have more than one self-adjoint extension, and even a continuum of them. [26] A densely defined, symmetric operator T is ...

  7. Compact operator on Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Compact_operator_on...

    The more general continuous functional calculus can be defined for any self-adjoint (or even normal, in the complex case) bounded linear operator on a Hilbert space. The compact case described here is a particularly simple instance of this functional calculus.

  8. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).

  9. Essential spectrum - Wikipedia

    en.wikipedia.org/wiki/Essential_spectrum

    That is, if is a compact self-adjoint operator on , then the essential spectra of and that of + coincide, i.e. () = (+). This explains why it is called the essential spectrum : Weyl (1910) originally defined the essential spectrum of a certain differential operator to be the spectrum independent of boundary conditions.