Search results
Results from the WOW.Com Content Network
For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the ...
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
Download as PDF; Printable version ... when testing for independence in a ... for Pearson's chi-squared test by subtracting 0.5 from the difference between ...
Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1]The choice of the test depends on many properties of the research question.
In statistics, Hoeffding's test of independence, named after Wassily Hoeffding, is a test based on the population measure of deviation from independence = where is the joint distribution function of two random variables, and and are their marginal distribution functions.
A chart showing a uniform distribution. In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1]
Ball covariance is a statistical measure that can be used to test the independence of two random variables defined on metric spaces. [1] The ball covariance is zero if and only if two random variables are independent, making it a good measure of correlation.