enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adder–subtractor - Wikipedia

    en.wikipedia.org/wiki/Adder–subtractor

    A 4-bit ripple-carry adder–subtractor based on a 4-bit adder that performs two's complement on A when D = 1 to yield S = B − A. Having an n-bit adder for A and B, then S = A + B. Then, assume the numbers are in two's complement. Then to perform B − A, two's complement theory says to invert each bit of A with a NOT gate then add one.

  3. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    The gate delay can easily be calculated by inspection of the full adder circuit. Each full adder requires three levels of logic. In a 32-bit ripple-carry adder, there are 32 full adders, so the critical path (worst case) delay is 3 (from input to carry in first adder) + 31 × 2 (for carry propagation in latter adders) = 65 gate delays. [6]

  4. Carry-skip adder - Wikipedia

    en.wikipedia.org/wiki/Carry-skip_adder

    Breaking this down into more specific terms, in order to build a 4-bit carry-bypass adder, 6 full adders would be needed. The input buses would be a 4-bit A and a 4-bit B, with a carry-in (CIN) signal. The output would be a 4-bit bus X and a carry-out signal (COUT). The first two full adders would add the first two bits together.

  5. Carry-lookahead adder - Wikipedia

    en.wikipedia.org/wiki/Carry-lookahead_adder

    [1] [2] Konrad Zuse is thought to have implemented the first carry-lookahead adder in his 1930s binary mechanical computer, the Zuse Z1. [3] Gerald B. Rosenberger of IBM filed for a patent on a oldesrt binary carry-lookahead adder in 1957. [4] Two widely used implementations of the concept are the Kogge–Stone adder (KSA) and Brent–Kung ...

  6. Kogge–Stone adder - Wikipedia

    en.wikipedia.org/wiki/Kogge–Stone_adder

    An example of a 4-bit Kogge–Stone adder is shown in the diagram. Each vertical stage produces a "propagate" and a "generate" bit, as shown. The culminating generate bits (the carries) are produced in the last stage (vertically), and these bits are XOR'd with the initial propagate after the input (the red boxes) to produce the sum bits. E.g., the first (least-significant) sum bit is ...

  7. Logic gate - Wikipedia

    en.wikipedia.org/wiki/Logic_gate

    A logic circuit diagram for a 4-bit carry lookahead binary adder design using only the AND, OR, and XOR logic gates.. A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output.

  8. Gray code - Wikipedia

    en.wikipedia.org/wiki/Gray_code

    Assuming is the th Gray-coded bit (being the most significant bit), and is the th binary-coded bit (being the most-significant bit), the reverse translation can be given recursively: =, and =. Alternatively, decoding a Gray code into a binary number can be described as a prefix sum of the bits in the Gray code, where each individual summation ...

  9. Lookahead carry unit - Wikipedia

    en.wikipedia.org/wiki/Lookahead_carry_unit

    By combining 4 CLAs and an LCU together creates a 16-bit adder. Four of these units can be combined to form a 64-bit adder. An additional (second-level) LCU is needed that accepts the propagate and generate from each LCU and the four carry outputs generated by the second-level LCU are fed into the first-level LCUs.