Search results
Results from the WOW.Com Content Network
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
For a current loop, this definition leads to the magnitude of the magnetic dipole moment equaling the product of the current times the area of the loop. Further, this definition allows the calculation of the expected magnetic moment for any known macroscopic current distribution.
The magnitude of the current in a given loop is proportional to the strength of the magnetic field, the area of the loop, and the rate of change of flux, and inversely proportional to the resistivity of the material. When graphed, these circular currents within a piece of metal look vaguely like eddies or whirlpools in a liquid.
In mathematics, the magnitude or size of a mathematical object is a property which determines whether the object is larger or smaller than other objects of the same kind. More formally, an object's magnitude is the displayed result of an ordering (or ranking) of the class of objects to which it belongs.
"Sq" current of one daytime vortex within the ionospheric dynamo region: 180 kA Typical current used in electric arc furnace for ferroalloys [11] 10 6: 1 MA High range of Birkeland current: 5 MA Flux tube between Jupiter and Io (moon) [12] 26 MA Sandia National Laboratories, Z machine approximate firing current [13] since 2007 256 MA
In electrical engineering, current sensing is any one of several techniques used to measure electric current. The measurement of current ranges from picoamps to tens of thousands of amperes. The selection of a current sensing method depends on requirements such as magnitude, accuracy, bandwidth, robustness, cost, isolation or size. The current ...
The formula for evaluating the drift velocity of charge carriers in a material of constant cross-sectional area is given by: [1] =, where u is the drift velocity of electrons, j is the current density flowing through the material, n is the charge-carrier number density, and q is the charge on the charge-carrier.
Magnetic moment strength (from lower to higher orders of magnitude) Factor (m 2 ⋅A) Value Item 10 −45: 9.0877 × 10 −45 m 2 ⋅A [1] Unit of magnetic moment in the Planck system of units. 10 −27: 4.330 7346 × 10 −27 m 2 ⋅A: Magnetic moment of a deuterium nucleus 10 −26: 1.410 6067 × 10 −26 m 2 ⋅A: Magnetic moment of a proton ...