Search results
Results from the WOW.Com Content Network
Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy and os found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases.
In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix generated from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which are useful for computing both the determinant and inverse of square matrices.
In mathematics, and in particular linear algebra, the Moore–Penrose inverse + of a matrix , often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
A matrix (in this case the right-hand side of the Sherman–Morrison formula) is the inverse of a matrix (in this case +) if and only if = =. We first verify that the right hand side ( Y {\displaystyle Y} ) satisfies X Y = I {\displaystyle XY=I} .
In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [1] [2] It is occasionally known as adjunct matrix, [3] [4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.
A common case is finding the inverse of a low-rank update A + UCV of A (where U only has a few columns and V only a few rows), or finding an approximation of the inverse of the matrix A + B where the matrix B can be approximated by a low-rank matrix UCV, for example using the singular value decomposition.
Inverse of a matrix. Add languages. Add links. Article; Talk; ... Download as PDF; Printable version; In other projects ... additional terms may apply.