Search results
Results from the WOW.Com Content Network
In statistical hypothesis testing, a uniformly most powerful (UMP) test is a hypothesis test which has the greatest power among all possible tests of a given size α. For example, according to the Neyman–Pearson lemma , the likelihood-ratio test is UMP for testing simple (point) hypotheses.
Neyman–Pearson lemma [5] — Existence:. If a hypothesis test satisfies condition, then it is a uniformly most powerful (UMP) test in the set of level tests.. Uniqueness: If there exists a hypothesis test that satisfies condition, with >, then every UMP test in the set of level tests satisfies condition with the same .
Illustration of the power of a statistical test, for a two sided test, through the probability distribution of the test statistic under the null and alternative hypothesis. α is shown as the blue area, the probability of rejection under null, while the red area shows power, 1 − β, the probability of correctly rejecting under the alternative.
In isolation, the upper tail (less than 1,000 out of 24,000 cities) fits both the log-normal and the Pareto distribution: the uniformly most powerful unbiased test comparing the lognormal to the power law shows that the largest 1000 cities are distinctly in the power law regime. [7]
[1] [2] Choosing the right statistical test is not a trivial task. [1] The choice of the test depends on many properties of the research question. The vast majority of studies can be addressed by 30 of the 100 or so statistical tests in use .
In statistics, the monotone ... a uniformly most powerful test can easily be ... than does the Rao–Blackwell procedure for mean-unbiased estimation but for a ...
In many situations, the score statistic reduces to another commonly used statistic. [11] In linear regression, the Lagrange multiplier test can be expressed as a function of the F-test. [12] When the data follows a normal distribution, the score statistic is the same as the t statistic. [clarification needed]
In statistics, the Lehmann–Scheffé theorem is a prominent statement, tying together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation. [1] The theorem states that any estimator that is unbiased for a given unknown quantity and that depends on the data only through a complete , sufficient statistic is the unique ...