Search results
Results from the WOW.Com Content Network
It has been found that the viscosity solution is the natural solution concept to use in many applications of PDE's, including for example first order equations arising in dynamic programming (the Hamilton–Jacobi–Bellman equation), differential games (the Hamilton–Jacobi–Isaacs equation) or front evolution problems, [1] [2] as well as ...
where is a second-order elliptic operator (implying that must be positive; a case where = + is considered below). A system of partial differential equations for a vector can also be parabolic. For example, such a system is hidden in an equation of the form
The simplest example of a second-order linear elliptic PDE is the Laplace equation, in which a i,j is zero if i ≠ j and is one otherwise, and where b i = c = f = 0. The Poisson equation is a slightly more general second-order linear elliptic PDE, in which f is not required to vanish.
An explicit construction of a parametrix for second order partial differential operators based on power series developments was discovered by Jacques Hadamard. It can be applied to the Laplace operator, the wave equation and the heat equation.
For a first-order PDE, the method of characteristics discovers so called characteristic curves along which the PDE becomes an ODE. [1] [2] Once the ODE is found, it can be solved along the characteristic curves and transformed into a solution for the original PDE.
In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. [ citation needed ] More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface .
Admissible limiter region for second-order TVD schemes. Unless indicated to the contrary, the above limiter functions are second order TVD. This means that they are designed such that they pass through a certain region of the solution, known as the TVD region, in order to guarantee stability of the scheme.
Heinz Otto Cordes (March 18, 1925 – October 30, 2018) was a German-American mathematician, specializing in partial differential equations (PDEs). [1] He is known for the Aronszajn–Cordes uniqueness theorem for solutions of elliptic PDEs (due independently to Nachman Aronszajn ).