enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irreducible polynomial - Wikipedia

    en.wikipedia.org/wiki/Irreducible_polynomial

    Irreducible polynomial. In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the ...

  3. Eisenstein's criterion - Wikipedia

    en.wikipedia.org/wiki/Eisenstein's_criterion

    Eisenstein's criterion. In mathematics, Eisenstein's criterion gives a sufficient condition for a polynomial with integer coefficients to be irreducible over the rational numbers – that is, for it to not be factorizable into the product of non-constant polynomials with rational coefficients. This criterion is not applicable to all polynomials ...

  4. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace function N q (n) counts monic polynomials of degree n which are primary (a power of an irreducible); or alternatively irreducible polynomials of all degrees d ...

  5. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    In algebra, Gauss's lemma, [1] named after Carl Friedrich Gauss, is a theorem [note 1] about polynomials over the integers, or, more generally, over a unique factorization domain (that is, a ring that has a unique factorization property similar to the fundamental theorem of arithmetic). Gauss's lemma underlies all the theory of factorization ...

  6. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    For polynomials over GF(2), where 2 r − 1 is a Mersenne prime, a polynomial of degree r is primitive if and only if it is irreducible. (Given an irreducible polynomial, it is not primitive only if the period of x is a non-trivial factor of 2 r − 1. Primes have no non-trivial factors.)

  7. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    For applying the above general construction of finite fields in the case of GF(p 2), one has to find an irreducible polynomial of degree 2. For p = 2, this has been done in the preceding section. If p is an odd prime, there are always irreducible polynomials of the form X 2 − r, with r in GF(p).

  8. Minimal polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(field...

    The minimal polynomial f of α is irreducible, i.e. it cannot be factorized as f = gh for two polynomials g and h of strictly lower degree. To prove this, first observe that any factorization f = gh implies that either g ( α ) = 0 or h ( α ) = 0, because f ( α ) = 0 and F is a field (hence also an integral domain ).

  9. Perron–Frobenius theorem - Wikipedia

    en.wikipedia.org/wiki/Perron–Frobenius_theorem

    Given a positive (or more generally irreducible non-negative matrix) A, one defines the function f on the set of all non-negative non-zero vectors x such that f(x) is the minimum value of [Ax] i / x i taken over all those i such that x i ≠ 0. Then f is a real-valued function, whose maximum is the Perron–Frobenius eigenvalue r.