enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    The monic irreducible polynomial x 8 + x 4 + x 3 + x + 1 over GF(2) is not primitive. Let λ be a root of this polynomial (in the polynomial representation this would be x), that is, λ 8 + λ 4 + λ 3 + λ + 1 = 0. Now λ 51 = 1, so λ is not a primitive element of GF(2 8) and generates a multiplicative subgroup of order 51. [5]

  3. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Irreducible polynomials over finite fields are also useful for pseudorandom number generators using feedback shift registers and discrete logarithm over F 2 n. The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace ...

  4. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    The number N(q, n) of monic irreducible polynomials of degree n over GF(q) is given by [4] (,) = /, where μ is the Möbius function. This formula is an immediate consequence of the property of X q − X above and the Möbius inversion formula.

  5. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...

  6. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    (A polynomial with integer coefficients is primitive if it has 1 as a greatest common divisor of its coefficients. [note 2]) A corollary of Gauss's lemma, sometimes also called Gauss's lemma, is that a primitive polynomial is irreducible over the integers if and only if it is irreducible over the rational numbers. More generally, a primitive ...

  7. Irreducibility (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Irreducibility_(mathematics)

    Irreducibility (mathematics) In mathematics, the concept of irreducibility is used in several ways. A polynomial over a field may be an irreducible polynomial if it cannot be factored over that field. In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial.

  8. Carry-less product - Wikipedia

    en.wikipedia.org/wiki/Carry-less_product

    The elements of GF(2 n), i.e. a finite field whose order is a power of two, are usually represented as polynomials in GF(2)[X]. Multiplication of two such field elements consists of multiplication of the corresponding polynomials, followed by a reduction with respect to some irreducible polynomial which is taken from the construction of the field.

  9. Field extension - Wikipedia

    en.wikipedia.org/wiki/Field_extension

    This minimal polynomial is irreducible over K. An element s of L is algebraic over K if and only if the simple extension K ( s ) / K is a finite extension. In this case the degree of the extension equals the degree of the minimal polynomial, and a basis of the K - vector space K ( s ) consists of 1 , s , s 2 , … , s d − 1 , {\displaystyle 1 ...