enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    For a diverging lens (for example a concave lens), the focal length is negative and is the distance to the point from which a collimated beam appears to be diverging after passing through the lens. When a lens is used to form an image of some object, the distance from the object to the lens u, the distance from the lens to the image v, and the ...

  3. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Image distance in a spherical mirror + = () Subscripts 1 and 2 refer to initial and final optical media respectively. These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:

  4. Lens - Wikipedia

    en.wikipedia.org/wiki/Lens

    A burning apparatus consisting of two biconvex lens. A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction.A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis.

  5. Camera lens - Wikipedia

    en.wikipedia.org/wiki/Camera_lens

    Different kinds of camera lenses, including wide angle, telephoto and speciality. A camera lens (also known as photographic lens or photographic objective) is an optical lens or assembly of lenses (compound lens) used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.

  6. Cardinal point (optics) - Wikipedia

    en.wikipedia.org/wiki/Cardinal_point_(optics)

    For a single lens surrounded by a medium of refractive index n = 1, the locations of the principal points H and H ′ with respect to the respective lens vertices are given by the formulas = ′ = (), where f is the focal length of the lens, d is its thickness, and r 1 and r 2 are the radii of curvature of its surfaces. Positive signs indicate ...

  7. Numerical aperture - Wikipedia

    en.wikipedia.org/wiki/Numerical_aperture

    In microscopy, NA is important because it indicates the resolving power of a lens. The size of the finest detail that can be resolved (the resolution) is proportional to ⁠ λ / 2NA ⁠, where λ is the wavelength of the light. A lens with a larger numerical aperture will be able to visualize finer details than a lens with a smaller numerical ...

  8. Optic equation - Wikipedia

    en.wikipedia.org/wiki/Optic_equation

    Distances in the thin lens equation. For a lens of negligible thickness, and focal length f, the distances from the lens to an object, S 1, and from the lens to its image, S 2, are related by the thin lens formula: + =.

  9. Magnification - Wikipedia

    en.wikipedia.org/wiki/Magnification

    Stepwise magnification by 6% per frame into a 39-megapixel image. In the final frame, at about 170x, an image of a bystander is seen reflected in the man's cornea. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a size ratio called optical magnification.