enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    The application of linear algebra in this context is vital for the design and operation of modern power systems, including renewable energy sources and smart grids. Overall, the application of linear algebra in fluid mechanics, fluid dynamics, and thermal energy systems is an example of the profound interconnection between mathematics and ...

  3. Consistent and inconsistent equations - Wikipedia

    en.wikipedia.org/wiki/Consistent_and...

    The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...

  4. Linear combination - Wikipedia

    en.wikipedia.org/wiki/Linear_combination

    In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).

  5. Linear algebraic group - Wikipedia

    en.wikipedia.org/wiki/Linear_algebraic_group

    For example, a linear algebraic group is solvable if it has a composition series of linear algebraic subgroups such that the quotient groups are commutative. Also, the normalizer , the center , and the centralizer of a closed subgroup H of a linear algebraic group G are naturally viewed as closed subgroup schemes of G .

  6. Numerical linear algebra - Wikipedia

    en.wikipedia.org/wiki/Numerical_linear_algebra

    For many problems in applied linear algebra, it is useful to adopt the perspective of a matrix as being a concatenation of column vectors. For example, when solving the linear system =, rather than understanding x as the product of with b, it is helpful to think of x as the vector of coefficients in the linear expansion of b in the basis formed by the columns of A.

  7. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Because a solution to a linear system must satisfy all of the equations, the solution set is the intersection of these lines, and is hence either a line, a single point, or the empty set. For three variables, each linear equation determines a plane in three-dimensional space , and the solution set is the intersection of these planes.

  8. Module (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Module_(mathematics)

    Modules over a Lie algebra are (associative algebra) modules over its universal enveloping algebra. If R and S are rings with a ring homomorphism φ : R → S, then every S-module M is an R-module by defining rm = φ(r)m. In particular, S itself is such an R-module.

  9. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.