Search results
Results from the WOW.Com Content Network
In supramolecular chemistry, [1] host–guest chemistry describes complexes that are composed of two or more molecules or ions that are held together in unique structural relationships by forces other than those of full covalent bonds. Host–guest chemistry encompasses the idea of molecular recognition and interactions through non-covalent ...
This lists the character tables for the more common molecular point groups used in the study of molecular symmetry. These tables are based on the group-theoretical treatment of the symmetry operations present in common molecules, and are useful in molecular spectroscopy and quantum chemistry. Information regarding the use of the tables, as well ...
Van 't Hoff plot in mechanism study. A chemical reaction may undergo different reaction mechanisms at different temperatures. [13] In this case, a Van 't Hoff plot with two or more linear fits may be exploited. Each linear fit has a different slope and intercept, which indicates different changes in enthalpy and entropy for each distinct ...
A generic More O’Ferrall–Jencks plot. R, I(1), I(2) and P stand for reactant(s), intermediate(s) 1, intermediate(s) 2 and product(s) respectively. The thick arrows represent movement of the transition state (black dot) parallel and perpendicular to the diagonal (red line). The thin arrow is the vector sum of the thick arrows.
The extra constant factor introduced in the denominator was introduced because, unlike the discrete form, the continuous form shown above is not dimensionless. As stated in the previous section, to make it into a dimensionless quantity, we must divide it by h 3 N (where h is usually taken to be the Planck constant).
There are two main kinds of complex: compounds formed by the interaction of a metal ion with a ligand and supramolecular complexes, such as host–guest complexes and complexes of anions. The stability constant(s) provide(s) the information required to calculate the concentration(s) of the complex(es) in solution.
Now, invoking the condition that the system is in equilibrium, that is, the chemical potential of the adsorbed molecules is equal to that of the molecules in gas phase, we have An example plot of the surface coverage θ A = P/(P + P 0) with respect to the partial pressure of the adsorbate. P 0 = 100 mTorr.
Toggle the table of contents. Scatchard equation. 3 languages. ... versus n, the Scatchard plot shows that the slope equals to -1/K d while the x-intercept equals the ...