Search results
Results from the WOW.Com Content Network
The formula was described by Albrecht Ludwig Friedrich Meister (1724–1788) in 1769 [4] and is based on the trapezoid formula which was described by Carl Friedrich Gauss and C.G.J. Jacobi. [5] The triangle form of the area formula can be considered to be a special case of Green's theorem.
This yields as a special case the well-known formula for the area of a triangle, by considering a triangle as a degenerate trapezoid in which one of the parallel sides has shrunk to a point. The 7th-century Indian mathematician Bhāskara I derived the following formula for the area of a trapezoid with consecutive sides a, c, b, d:
Trapezoid + and are the bases Sources: [1] [2] [3] ... List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities;
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.
A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...
In the case of a pyramid, the base faces are polygonal and the side faces are trapezoidal. A right frustum is a right pyramid or a right cone truncated perpendicularly to its axis; [ 3 ] otherwise, it is an oblique frustum .
The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.
The same formula holds for any three-dimensional objects, except that each should be the volume of , rather than its area. It also holds for any subset of R d , {\displaystyle \mathbb {R} ^{d},} for any dimension d , {\displaystyle d,} with the areas replaced by the d {\displaystyle d} -dimensional measures of the parts.