enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    If all eigenvalues of J are real or complex numbers with absolute value strictly less than 1 then a is a stable fixed point; if at least one of them has absolute value strictly greater than 1 then a is unstable. Just as for n =1, the case of the largest absolute value being 1 needs to be investigated further — the Jacobian matrix test is ...

  3. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [1] [2]In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is

  4. Metzler matrix - Wikipedia

    en.wikipedia.org/wiki/Metzler_matrix

    The exponential of a Metzler (or quasipositive) matrix is a nonnegative matrix because of the corresponding property for the exponential of a nonnegative matrix. This is natural, once one observes that the generator matrices of continuous-time Markov chains are always Metzler matrices, and that probability distributions are always non-negative.

  5. Input-to-state stability - Wikipedia

    en.wikipedia.org/wiki/Input-to-state_stability

    ISS unified the Lyapunov and input-output stability theories and revolutionized our view on stabilization of nonlinear systems, design of robust nonlinear observers, stability of nonlinear interconnected control systems, nonlinear detectability theory, and supervisory adaptive control. This made ISS the dominating stability paradigm in ...

  6. Stable polynomial - Wikipedia

    en.wikipedia.org/wiki/Stable_polynomial

    A linear system is BIBO stable if its characteristic polynomial is stable. The denominator is required to be Hurwitz stable if the system is in continuous-time and Schur stable if it is in discrete-time. In practice, stability is determined by applying any one of several stability criteria.

  7. Linear stability - Wikipedia

    en.wikipedia.org/wiki/Linear_stability

    The solutions to this equation grow exponentially; the stationary point x = 0 is linearly unstable. To derive the linearization at x = 1, one writes = (+) (+) =, where r = x1. The linearized equation is then =; the linearized operator is A 1 = −1, the only eigenvalue is =, hence this stationary point is linearly stable.

  8. Numerical stability - Wikipedia

    en.wikipedia.org/wiki/Numerical_stability

    Many algorithms solve this problem by starting with an initial approximation x 0 to , for instance x 0 = 1.4, and then computing improved guesses x 1, x 2, etc. One such method is the famous Babylonian method, which is given by x k+1 = (x k + 2/x k)/2. Another method, called "method X", is given by x k+1 = (x k 2 − 2) 2 + x k.

  9. Nyquist stability criterion - Wikipedia

    en.wikipedia.org/wiki/Nyquist_stability_criterion

    The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...