Search results
Results from the WOW.Com Content Network
Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose across the plasma membrane, a process known as facilitated diffusion. Because glucose is a vital source of energy for all life, these transporters are present in all phyla .
Method of glucose uptake differs throughout tissues depending on two factors; the metabolic needs of the tissue and availability of glucose.The two ways in which glucose uptake can take place are facilitated diffusion (a passive process) and secondary active transport (an active process which on the ion-gradient which is established through the hydrolysis of ATP, known as primary active ...
Because there are only two enzymes that affect this specific modification, they are very tightly regulated and depend on a lot of other factors. [11] Because O-GlcNAc can be added and removed, it is known as a dynamic modification and has a lot of similarities to phosphorylation. O-GlcNAcylation and phosphorylation can occur on the same ...
Facilitated diffusion in cell membrane, showing ion channels and carrier proteins. Facilitated diffusion (also known as facilitated transport or passive-mediated transport) is the process of spontaneous passive transport (as opposed to active transport) of molecules or ions across a biological membrane via specific transmembrane integral proteins. [1]
P-gp is a 170 kDa transmembrane glycoprotein, which includes 10–15 kDa of N-terminal glycosylation.The N-terminal half of the protein contains six transmembrane helixes, followed by a large cytoplasmic domain with an ATP-binding site, and then a second section with six transmembrane helixes and an ATP-binding domain that shows over 65% of amino acid similarity with the first half of the ...
The first structures were of the glycerol 3-phosphate/phosphate exchanger GlpT [8] and the lactose-proton symporter LacY, [7] which served to elucidate the overall structure of the protein family and provided initial models for understanding the MFS transport mechanism. Since these initial structures other MFS structures have been solved which ...
SLC5A4, also known as SGLT3, is a member of the sodium-glucose cotransporter family. Unlike SGLT1 and SGLT2, which are efficient glucose transporters, SGLT3 functions primarily as a glucose sensor rather than a transporter. It has a low affinity for glucose and does not significantly contribute to glucose transport across cell membranes.
The process of glycosylation (binding a carbohydrate to a protein) is a post-translational modification, meaning it happens after the production of the protein. [3] Glycosylation is a process that roughly half of all human proteins undergo and heavily influences the properties and functions of the protein. [ 3 ]