enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    Lift is proportional to the density of the air and approximately proportional to the square of the flow speed. Lift also depends on the size of the wing, being generally proportional to the wing's area projected in the lift direction. In calculations it is convenient to quantify lift in terms of a lift coefficient based on these factors.

  3. Vortex lift - Wikipedia

    en.wikipedia.org/wiki/Vortex_lift

    Four basic configurations which have used vortex lift are, in chronological order, the 60-degree delta wing; the ogive delta wing with its sharply-swept leading edge at the root; the moderately-swept wing with a leading-edge extension, which is known as a hybrid wing; and the sharp-edge forebody, or vortex-lift strake. [7]

  4. Lift-induced drag - Wikipedia

    en.wikipedia.org/wiki/Lift-induced_drag

    For modern wings with winglets, the ideal lift distribution is not elliptical. [6]: 4.9 For a given wing area, a high aspect ratio wing will produce less induced drag than a wing of low aspect ratio. [16]

  5. Wing - Wikipedia

    en.wikipedia.org/wiki/Wing

    A wing is a type of fin that produces both lift and drag while moving through air. Wings are defined by two shape characteristics, an airfoil section and a planform. Wing efficiency is expressed as lift-to-drag ratio, which compares the benefit of lift with the air resistance of a given wing shape, as it flies.

  6. Ground effect (aerodynamics) - Wikipedia

    en.wikipedia.org/wiki/Ground_effect_(aerodynamics)

    While in the ground effect, the wing requires a lower angle of attack to produce the same amount of lift. In wind tunnel tests, in which the angle of attack and airspeed remain constant, an increase in the lift coefficient ensues, [9] which accounts for the "floating" effect.

  7. Aircraft flight mechanics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_mechanics

    Aircraft flight mechanics are relevant to fixed wing (gliders, aeroplanes) and rotary wing (helicopters) aircraft.An aeroplane (airplane in US usage), is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".

  8. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a

  9. Wingtip vortices - Wikipedia

    en.wikipedia.org/wiki/Wingtip_vortices

    Wingtip vortices are circular patterns of rotating air left behind a wing as it generates lift. [1]: 5.14 The name is a misnomer because the cores of the vortices are slightly inboard of the wing tips. [2]: 369 Wingtip vortices are sometimes named trailing or lift-induced vortices because they also occur at points other than at the wing tips.