enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Section modulus - Wikipedia

    en.wikipedia.org/wiki/Section_modulus

    The plastic section modulus is calculated as the sum of the areas of the cross section on either side of the PNA, each multiplied by the distance from their respective local centroids to the PNA. [16] = + where: A C is the area in compression A T is the area in tension y C, y T are the distances from the PNA to their centroids. Plastic section ...

  3. Plastic moment - Wikipedia

    en.wikipedia.org/wiki/Plastic_Moment

    In structural engineering, the plastic moment (M p) is a property of a structural section. It is defined as the moment at which the entire cross section has reached its yield stress . This is theoretically the maximum bending moment that the section can resist – when this point is reached a plastic hinge is formed and any load beyond this ...

  4. Four-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Four-point_flexural_test

    The four-point flexural test provides values for the modulus of elasticity in bending, flexural stress, flexural strain and the flexural stress-strain response of the material. This test is very similar to the three-point bending flexural test .

  5. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    is the elastic modulus and is the second moment of area of the beam's cross section. I {\\displaystyle I} must be calculated with respect to the axis which is perpendicular to the applied loading. [ N 1 ] Explicitly, for a beam whose axis is oriented along x {\\displaystyle x} with a loading along z {\\displaystyle z} , the beam's cross section ...

  6. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    Flexural modulus measurement For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the ...

  7. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both E {\displaystyle E} , a material property, and I {\displaystyle I} , the physical geometry of the beam.

  8. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    The following assumptions are made while deriving Euler's formula: [3] The material of the column is homogeneous and isotropic. The compressive load on the column is axial only. The column is free from initial stress. The weight of the column is neglected. The column is initially straight (no eccentricity of the axial load).

  9. Three-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Three-point_flexural_test

    The three-point bending flexural test provides values for the modulus of elasticity in bending, flexural stress, flexural strain and the flexural stress–strain response of the material. This test is performed on a universal testing machine (tensile testing machine or tensile tester) with a three-point or four-point bend fixture.