Search results
Results from the WOW.Com Content Network
In a two-dimensional cartesian plane, identify the point with coordinates (x, y) with the complex number z = x + iy. Here, i is the imaginary unit and is identified with the point with coordinates (0, 1), so it is not the unit vector in the direction of the x-axis. Since the complex numbers can be multiplied giving another complex number, this ...
In algebra, a split-complex number (or hyperbolic number, also perplex number, double number) is based on a hyperbolic unit j satisfying =, where . A split-complex number has two real number components x and y , and is written z = x + y j . {\displaystyle z=x+yj.}
For any point, the abscissa is the first value (x coordinate), and the ordinate is the second value (y coordinate). In mathematics , the abscissa ( / æ b ˈ s ɪ s . ə / ; plural abscissae or abscissas ) and the ordinate are respectively the first and second coordinate of a point in a Cartesian coordinate system : [ 1 ] [ 2 ]
In its dual form, this lemma states that in a plane graph, the sum of the numbers of sides of the faces of the graph equals twice the number of edges. [29] The medial graph of a plane graph is isomorphic to the medial graph of its dual. Two planar graphs can have isomorphic medial graphs only if they are dual to each other. [30]
A point in the plane may be represented in homogeneous coordinates by a triple (x, y, z) where x/z and y/z are the Cartesian coordinates of the point. [10] This introduces an "extra" coordinate since only two are needed to specify a point on the plane, but this system is useful in that it represents any point on the projective plane without the ...
The complex number z can be represented in rectangular form as = + where i is the imaginary unit, or can alternatively be written in polar form as = ( + ) and from there, by Euler's formula, [14] as = = . where e is Euler's number, and φ, expressed in radians, is the principal value of the complex number function arg applied to x + iy ...
The distance along the line from the origin to the point z = x + yi is the modulus or absolute value of z. The angle θ is the argument of z. Argand diagram refers to a geometric plot of complex numbers as points z = x + iy using the horizontal x-axis as the real axis and the vertical y-axis as the imaginary axis. [3]
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.