enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    The posterior probability distribution of one random variable given the value of another can be calculated with Bayes' theorem by multiplying the prior probability distribution by the likelihood function, and then dividing by the normalizing constant, as follows:

  3. Prior probability - Wikipedia

    en.wikipedia.org/wiki/Prior_probability

    An informative prior expresses specific, definite information about a variable. An example is a prior distribution for the temperature at noon tomorrow. A reasonable approach is to make the prior a normal distribution with expected value equal to today's noontime temperature, with variance equal to the day-to-day variance of atmospheric temperature, or a distribution of the temperature for ...

  4. Posterior predictive distribution - Wikipedia

    en.wikipedia.org/wiki/Posterior_predictive...

    When a conjugate prior is being used, the posterior predictive distribution belongs to the same family as the prior predictive distribution, and is determined simply by plugging the updated hyperparameters for the posterior distribution of the parameter(s) into the formula for the prior predictive distribution.

  5. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    Now, if the prevalence of this disease is 9.09%, and if we take that as the prior probability, then the prior odds is about 1:10. So after receiving a positive test result, the posterior odds of having the disease becomes 1:1, which means that the posterior probability of having the disease is 50%.

  6. Conjugate prior - Wikipedia

    en.wikipedia.org/wiki/Conjugate_prior

    In Bayesian probability theory, if, given a likelihood function (), the posterior distribution is in the same probability distribution family as the prior probability distribution (), the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function ().

  7. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  8. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    And the weights α,β in the formula for posterior match this: the weight of the prior is 4 times the weight of the measurement. Combining this prior with n measurements with average v results in the posterior centered at 4 4 + n V + n 4 + n v {\displaystyle {\frac {4}{4+n}}V+{\frac {n}{4+n}}v} ; in particular, the prior plays the same role as ...

  9. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    These posterior probabilities are proportional to the product of the prior and the marginal likelihood, where the marginal likelihood is the integral of the sampling density over the prior distribution of the parameters. In complex models, marginal likelihoods are generally computed numerically. [11]