Ads
related to: calculus ii 2nd midterm
Search results
Results from the WOW.Com Content Network
Thus, the second partial derivative test indicates that f(x, y) has saddle points at (0, −1) and (1, −1) and has a local maximum at (,) since = <. At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point.
Second derivative test; Extreme value theorem; Differential equation; Differential operator; Newton's method; Taylor's theorem; L'Hôpital's rule; General Leibniz rule; Mean value theorem; Logarithmic derivative; Differential (calculus) Related rates; Regiomontanus' angle maximization problem; Rolle's theorem
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.
In mathematics, the symmetry of second derivatives (also called the equality of mixed partials) is the fact that exchanging the order of partial derivatives of a multivariate function f ( x 1 , x 2 , … , x n ) {\displaystyle f\left(x_{1},\,x_{2},\,\ldots ,\,x_{n}\right)}
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
This part is sometimes referred to as the second fundamental theorem of calculus [7] or the Newton–Leibniz theorem. Let f {\displaystyle f} be a real-valued function on a closed interval [ a , b ] {\displaystyle [a,b]} and F {\displaystyle F} a continuous function on [ a , b ] {\displaystyle [a,b]} which is an antiderivative of f ...
It can be thought of as the rate of change of the function in the -direction.. Sometimes, for = (,, …), the partial derivative of with respect to is denoted as . Since a partial derivative generally has the same arguments as the original function, its functional dependence is sometimes explicitly signified by the notation, such as in:
It would be a few decades later that Newton and Leibniz independently developed infinitesimal calculus, which grew, with the stimulus of applied work that continued through the 18th century, into analysis topics such as the calculus of variations, ordinary and partial differential equations, Fourier analysis, and generating functions.
Ads
related to: calculus ii 2nd midterm