enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.

  3. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    This means that the upper and lower sums of the function f are evaluated on a partition a = x 0 ≤ x 1 ≤ . . . ≤ x n = b whose values x i are increasing. Geometrically, this signifies that integration takes place "left to right", evaluating f within intervals [ x i , x i +1 ] where an interval with a higher index lies to the right of one ...

  4. List of definite integrals - Wikipedia

    en.wikipedia.org/wiki/List_of_definite_integrals

    In mathematics, the definite integral ()is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.

  5. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    If f(x) is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision. Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure ( quadrature or squaring ...

  6. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Then | | = ⁡ (()) +, where sgn(x) is the sign function, which takes the values −1, 0, 1 when x is respectively negative, zero or positive. This can be proved by computing the derivative of the right-hand side of the formula, taking into account that the condition on g is here for insuring the continuity of the integral.

  7. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    This visualization also explains why integration by parts may help find the integral of an inverse function f −1 (x) when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are inverses, and the integralx dy may be calculated as above from knowing the integral ∫ y dx.

  8. Integration using parametric derivatives - Wikipedia

    en.wikipedia.org/wiki/Integration_using...

    For example, suppose we want to find the integral ∫ 0 ∞ x 2 e − 3 x d x . {\displaystyle \int _{0}^{\infty }x^{2}e^{-3x}\,dx.} Since this is a product of two functions that are simple to integrate separately, repeated integration by parts is certainly one way to evaluate it.

  9. Integration by reduction formulae - Wikipedia

    en.wikipedia.org/wiki/Integration_by_reduction...

    To compute the integral, we set n to its value and use the reduction formula to express it in terms of the (n – 1) or (n – 2) integral. The lower index integral can be used to calculate the higher index ones; the process is continued repeatedly until we reach a point where the function to be integrated can be computed, usually when its index is 0 or 1.