enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    In the first example provided above, the sex of the patient would be a nuisance variable. For example, consider if the drug was a diet pill and the researchers wanted to test the effect of the diet pills on weight loss. The explanatory variable is the diet pill and the response variable is the amount of weight loss.

  3. Confounding - Wikipedia

    en.wikipedia.org/wiki/Confounding

    The confounding variable makes the results of the analysis unreliable. It is quite likely that we are just measuring the fact that highway driving results in better fuel economy than city driving. In statistics terms, the make of the truck is the independent variable, the fuel economy (MPG) is the dependent variable and the amount of city ...

  4. Concept drift - Wikipedia

    en.wikipedia.org/wiki/Concept_drift

    Concept drift generally occurs when the covariates that comprise the data set begin to explain the variation of your target set less accurately — there may be some confounding variables that have emerged, and that one simply cannot account for, which renders the model accuracy to progressively decrease with time. Generally, it is advised to ...

  5. Glossary of experimental design - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_experimental...

    Note: Full factorial designs have no confounding and are said to have resolution "infinity". For most practical purposes, a resolution 5 design is excellent and a resolution 4 design may be adequate. Resolution 3 designs are useful as economical screening designs. Response(s): The output(s) of a process. Sometimes called dependent variable(s).

  6. Spurious relationship - Wikipedia

    en.wikipedia.org/wiki/Spurious_relationship

    Graphical model: Whereas a mediator is a factor in the causal chain (top), a confounder is a spurious factor incorrectly implying causation (bottom). In statistics, a spurious relationship or spurious correlation [1] [2] is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third ...

  7. Controlling for a variable - Wikipedia

    en.wikipedia.org/wiki/Controlling_for_a_variable

    The regression uses as independent variables not only the one or ones whose effects on the dependent variable are being studied, but also any potential confounding variables, thus avoiding omitted variable bias. "Confounding variables" in this context means other factors that not only influence the dependent variable (the outcome) but also ...

  8. Simpson's paradox - Wikipedia

    en.wikipedia.org/wiki/Simpson's_paradox

    The paradox can be resolved when confounding variables and causal relations are appropriately addressed in the statistical modeling [4] [5] (e.g., through cluster analysis [6]). Simpson's paradox has been used to illustrate the kind of misleading results that the misuse of statistics can generate. [7] [8]

  9. Correlation does not imply causation - Wikipedia

    en.wikipedia.org/wiki/Correlation_does_not_imply...

    All of those examples deal with a lurking variable, which is simply a hidden third variable that affects both of the variables observed to be correlated. That third variable is also known as a confounding variable, with the slight difference that confounding variables need not be hidden and may thus be corrected for in an analysis. Note that ...