Search results
Results from the WOW.Com Content Network
In first-order logic, resolution condenses the traditional syllogisms of logical inference down to a single rule. To understand how resolution works, consider the following example syllogism of term logic: All Greeks are Europeans. Homer is a Greek. Therefore, Homer is a European. Or, more generally: .
In predicate logic, generalization (also universal generalization, universal introduction, [1] [2] [3] GEN, UG) is a valid inference rule. It states that if ⊢ P ( x ) {\displaystyle \vdash \!P(x)} has been derived, then ⊢ ∀ x P ( x ) {\displaystyle \vdash \!\forall x\,P(x)} can be derived.
In predicate logic, existential generalization [1] [2] (also known as existential introduction, ∃I) is a valid rule of inference that allows one to move from a specific statement, or one instance, to a quantified generalized statement, or existential proposition.
In traditional logic, obversion is a "type of immediate inference in which from a given proposition another proposition is inferred whose subject is the same as the original subject, whose predicate is the contradictory of the original predicate, and whose quality is affirmative if the original proposition's quality was negative and vice versa". [1]
In predicate logic, universal instantiation [1] [2] [3] (UI; also called universal specification or universal elimination, [citation needed] and sometimes confused with dictum de omni) [citation needed] is a valid rule of inference from a truth about each member of a class of individuals to the truth about a particular individual of that class.
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
Deductively valid arguments follow a rule of inference. [38] A rule of inference is a scheme of drawing conclusions that depends only on the logical form of the premises and the conclusion but not on their specific content. [39] [40] The most-discussed rule of inference is the modus ponens. It has the following form: p; if p then q; therefore q.
In propositional logic, conjunction elimination (also called and elimination, ∧ elimination, [1] or simplification) [2] [3] [4] is a valid immediate inference, argument form and rule of inference which makes the inference that, if the conjunction A and B is true, then A is true, and B is true.