Search results
Results from the WOW.Com Content Network
In chemistry, an acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, [1] including inorganic acids. It contains a double-bonded oxygen atom and an organyl group ( R−C=O ) or hydrogen in the case of formyl group ( H−C=O ).
General chemical structure of an acyl-CoA, where R is a carboxylic acid side chain. Acyl-CoA is a group of CoA-based coenzymes that metabolize carboxylic acids. Fatty acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this ...
Acyl-CoA is then degraded in a four-step cycle of oxidation, hydration, oxidation and thiolysis catalyzed by four respective enzymes, namely acyl-CoA dehydrogenase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and thiolase. The cycle produces a new fatty acid chain with two fewer carbons and acetyl-CoA as a byproduct. [15]
Long-chain-fatty-acid—CoA ligase catalyzes the reaction between a fatty acid with ATP to give a fatty acyl adenylate, plus inorganic pyrophosphate, which then reacts with free coenzyme A to give a fatty acyl-CoA ester and AMP. If the fatty acyl-CoA has a long chain, then the carnitine shuttle must be utilized (shown in the table below):
Carnitine palmitoyltransferase I (CPT1) also known as carnitine acyltransferase I, CPTI, CAT1, CoA:carnitine acyl transferase (CCAT), or palmitoylCoA transferase I, is a mitochondrial enzyme responsible for the formation of acyl carnitines by catalyzing the transfer of the acyl group of a long-chain fatty acyl-CoA from coenzyme A to l-carnitine.
The illustration is, for diagrammatic purposes, of a 12 carbon fatty acid. Most fatty acids in human plasma are 16 or 18 carbon atoms long. A diagrammatic illustration of the transfer of an acyl-CoA molecule across the inner membrane of the mitochondrion by carnitine-acyl-CoA transferase (CAT). The illustrated acyl chain is, for diagrammatic ...
Fatty acid esterification takes place in the endoplasmic reticulum of cells by metabolic pathways in which acyl groups in fatty acyl-CoAs are transferred to the hydroxyl groups of glycerol-3-phosphate and diacylglycerol. [7] Three fatty acid chains are bonded to each glycerol molecule.
Acyl-CoA cholesterol acyl transferase EC 2.3.1.26, more simply referred to as ACAT, also known as sterol O-acyltransferase (SOAT), belongs to the class of enzymes known as acyltransferases. The role of this enzyme is to transfer fatty acyl groups from one molecule to another. ACAT is an important enzyme in bile acid biosynthesis.