enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Endergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Endergonic_reaction

    In chemical thermodynamics, an endergonic reaction (from Greek ἔνδον (endon) 'within' and ἔργον (ergon) 'work'; also called a heat absorbing nonspontaneous reaction or an unfavorable reaction) is a chemical reaction in which the standard change in free energy is positive, and an additional driving force is needed to perform this ...

  3. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    Its symbol is Δ f G˚. All elements in their standard states (diatomic oxygen gas, graphite, etc.) have standard Gibbs free energy change of formation equal to zero, as there is no change involved. Δ f G = Δ f G˚ + RT ln Q f, where Q f is the reaction quotient. At equilibrium, Δ f G = 0, and Q f = K, so the equation becomes Δ f G˚ = − ...

  4. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    The ∆G° can be written as a function of change in enthalpy (∆H°) and change in entropy (∆S°) as ∆G°= ∆H° – T∆S°. Practically, enthalpies, not free energy, are used to determine whether a reaction is favorable or unfavorable, because ∆ H ° is easier to measure and T ∆ S ° is usually too small to be of any significance ...

  5. Marcus theory - Wikipedia

    en.wikipedia.org/wiki/Marcus_theory

    and they have positive (endergonic) or negative (exergonic) Gibbs free energies of reaction . As Marcus calculations refer exclusively to the electrostatic properties in the solvent (outer sphere) Δ G ∘ {\displaystyle \Delta G^{\circ }} and λ 0 {\displaystyle \lambda _{0}} are independent of one another and therefore can just be added up.

  6. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...

  7. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    The isolated reaction of anabolism is unfavorable in a cell due to a positive Gibbs free energy (+ΔG). Thus, an input of chemical energy through a coupling with an exergonic reaction is necessary. [ 1 ] : 25–27 The coupled reaction of the catabolic pathway affects the thermodynamics of the reaction by lowering the overall activation energy ...

  8. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The reaction quotient (Q r) is the ratio of the chemical activity (a i) of the reduced form (the reductant, a Red) to the activity of the oxidized form (the oxidant, a ox). It is equal to the ratio of their concentrations (C i) only if the system is sufficiently diluted and the activity coefficients (γ i) are close to unity (a i = γ i C i):

  9. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The general form of the Eyring–Polanyi equation somewhat resembles the Arrhenius equation: = ‡ where is the rate constant, ‡ is the Gibbs energy of activation, is the transmission coefficient, is the Boltzmann constant, is the temperature, and is the Planck constant.