Search results
Results from the WOW.Com Content Network
Parasitic drag, or profile drag, is the sum of viscous pressure drag (form drag) and drag due to surface roughness (skin friction drag). Additionally, the presence of multiple bodies in relative proximity may incur so called interference drag , which is sometimes described as a component of parasitic drag.
Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion. Stokes' law makes the following assumptions for the behavior of a particle in a fluid: Laminar flow; No inertial effects (zero Reynolds number) Spherical particles; Homogeneous (uniform in composition) material
The drag equation may be derived to within a multiplicative constant by the method of dimensional analysis. If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the: speed u, fluid density ρ, kinematic viscosity ν of the fluid,
The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2. A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4. R.G. Lerner, G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12– 13.
Viscous drag. Add languages. Add links. Article; Talk; English. ... Download as PDF; Printable version; In other projects ... Redirect page. Redirect to: Drag ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
The equation of motion for Stokes flow can be obtained by linearizing the steady state Navier–Stokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the Navier–Stokes equations reduces it to the momentum balance in the Stokes equations: [1]