enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    The nozzles on a rocket designed to place satellites in orbit are constructed using such converging-diverging geometry. The energy and continuity equations can take on particularly helpful forms for the steady, uniform, isentropic flow through the nozzle. Apply the energy equation with Q, W S = 0 between the reservoir and some location in the ...

  3. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    Point 2 labels the nozzle throat, where M = 1 if the flow is choked. Point 3 labels the end of the nozzle where the flow transitions from isentropic to Fanno. With a high enough initial pressure, supersonic flow can be maintained through the constant area duct, similar to the desired performance of a blowdown-type supersonic wind tunnel ...

  4. Choked flow - Wikipedia

    en.wikipedia.org/wiki/Choked_flow

    Figure 1a shows the flow through the nozzle when it is completely subsonic (i.e. the nozzle is not choked). The flow in the chamber accelerates as it converges toward the throat, where it reaches its maximum (subsonic) speed at the throat. The flow then decelerates through the diverging section and exhausts into the ambient as a subsonic jet.

  5. Non ideal compressible fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Non_ideal_compressible...

    For example, the Mach number evolution of an ideal gas in a supersonic nozzle depends only on the heat capacity ratio (namely on the fluid) and on the exhaust-to-stagnation pressure ratio. [6] Considering real-gas effects, instead, even fixing the fluid and the pressure ratio, different total states yield different Mach profiles. [17]

  6. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    An example of convective but laminar (nonturbulent) flow would be the passage of a viscous fluid (for example, oil) through a small converging nozzle. Such flows, whether exactly solvable or not, can often be thoroughly studied and understood.

  7. de Laval nozzle - Wikipedia

    en.wikipedia.org/wiki/De_Laval_nozzle

    A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .

  8. Isothermal flow - Wikipedia

    en.wikipedia.org/wiki/Isothermal_flow

    Isothermal flow is a model of compressible fluid flow whereby the flow remains at the same temperature while flowing in a conduit. [1] In the model, heat transferred through the walls of the conduit is offset by frictional heating back into the flow. Although the flow temperature remains constant, a change in stagnation temperature occurs ...

  9. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    For example, the pressure needed to drive a viscous fluid up against gravity would contain both that as needed in Poiseuille's law plus that as needed in Bernoulli's equation, such that any point in the flow would have a pressure greater than zero (otherwise no flow would happen). Another example is when blood flows into a narrower constriction ...