enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    Using the language of graphical models, the Naive Bayes classifier is described by the equation below. The basic idea (or assumption) of this model is that each category has its own distribution over the codebooks, and that the distributions of each category are observably different. Take a face category and a car category for an example.

  3. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Images Classification 2013 [47] [48] S. Houben et al. KITTI Vision Benchmark Dataset Autonomous vehicles driving through a mid-size city captured images of various areas using cameras and laser scanners. Many benchmarks extracted from data. >100 GB of data Images, text Classification, object detection 2012 [49] [50] [51] A. Geiger et al. FieldSAFE

  4. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  5. Computer vision - Wikipedia

    en.wikipedia.org/wiki/Computer_vision

    Image acquisition – A digital image is produced by one or several image sensors, which, besides various types of light-sensitive cameras, include range sensors, tomography devices, radar, ultra-sonic cameras, etc. Depending on the type of sensor, the resulting image data is an ordinary 2D image, a 3D volume, or an image sequence.

  6. Cellular neural network - Wikipedia

    en.wikipedia.org/wiki/Cellular_neural_network

    In the original Chua-Yang CNN (CY-CNN) processor, the state of the cell was a weighted sum of the inputs and the output was a piecewise linear function.However, like the original perceptron-based neural networks, the functions it could perform were limited: specifically, it was incapable of modeling non-linear functions, such as XOR.

  7. Pyramid (image processing) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(image_processing)

    These can be seen as a kind of image pyramid. Because those file format store the "large-scale" features first, and fine-grain details later in the file, a particular viewer displaying a small "thumbnail" or on a small screen can quickly download just enough of the image to display it in the available pixels—so one file can support many ...

  8. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    This idea is motivated by the fact that some binary patterns occur more commonly in texture images than others. A local binary pattern is called uniform if the binary pattern contains at most two 0-1 or 1-0 transitions. For example, 00010000 (2 transitions) is a uniform pattern, but 01010100 (6 transitions) is not.

  9. Contextual image classification - Wikipedia

    en.wikipedia.org/.../Contextual_image_classification

    The template matching is a "brute force" implementation of this approach. [1] The concept is first create a set of templates, and then look for small parts in the image match with a template. This method is computationally high and inefficient. It keeps an entire templates list during the whole process and the number of combinations is ...