Search results
Results from the WOW.Com Content Network
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
In either case, the area formula is correct in absolute value. This is commonly called the shoelace formula or surveyor's formula. [6] The area A of a simple polygon can also be computed if the lengths of the sides, a 1, a 2, ..., a n and the exterior angles, θ 1, θ 2, ..., θ n are known, from:
Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [11]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.
Using these formulas, the area of any polygon can be found by dividing the polygon into triangles. [4] For shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a major motivation for the historical development of calculus .
Farey sunburst of order 6, with 1 interior (red) and 96 boundary (green) points giving an area of 1 + 96 / 2 − 1 = 48 [1]. In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary.
A triangulated polygon with 11 vertices: 11 sides and 8 diagonals form 9 triangles. Every simple polygon can be partitioned into non-overlapping triangles by a subset of its diagonals. When the polygon has sides, this produces triangles, separated by diagonals.
This formula can be derived by partitioning the n-sided polygon into n congruent isosceles triangles, and then noting that the apothem is the height of each triangle, and that the area of a triangle equals half the base times the height. The following formulations are all equivalent:
In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners ... The last trigonometric area formula including the sides a, b, c, ...