Search results
Results from the WOW.Com Content Network
One of the issues faced by drug delivery is the solubility of the drug in the body; around 40% of newly detected chemicals found in drug discovery are poorly soluble in water. [28] This low solubility affects the bioavailability of the drug, meaning the rate at which the drug reaches the circulatory system and thus the target site.
With the aid of nanoparticle delivery systems, however, studies have shown that some drugs can now cross the BBB, and even exhibit lower toxicity and decrease adverse effects throughout the body. Toxicity is an important concept for pharmacology because high toxicity levels in the body could be detrimental to the patient by affecting other ...
Intranasal delivery of carbamazepine nanoparticles increase antiepileptic drug bioavailability. [16] Administering a self-assembling hydrogel with neuroactive drugs to treat Parkinson's disease appears to be biocompatible, low in toxicity, and have a good recovery capacity.
Nanocarriers are useful in the drug delivery process because they can deliver drugs to site-specific targets, allowing drugs to be delivered in certain organs or cells but not in others. Site-specificity is a major therapeutic benefit as it prevents drugs from being delivered to the wrong places.
Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will ...
This can have many causes, the most simple being that the way the drug was produced only allows a small amount to pass through the barrier. Another cause of this would be the binding to other proteins in the body rendering the drug ineffective to either be therapeutically active or able to pass through the barrier with the adhered protein. [6]
This means of delivery is largely founded on nanomedicine, which plans to employ nanoparticle-mediated drug delivery in order to combat the downfalls of conventional drug delivery. These nanoparticles would be loaded with drugs and targeted to specific parts of the body where there is solely diseased tissue, thereby avoiding interaction with ...
Conversely, many new medical technologies involving nanoparticles as delivery systems or as sensors would be examples of nanobiotechnology since they involve using nanotechnology to advance the goals of biology. The definitions enumerated above will be utilized whenever a distinction between nanobio and bionano is made in this article.