Search results
Results from the WOW.Com Content Network
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
Although growth may initially be exponential, the modelled phenomena will eventually enter a region in which previously ignored negative feedback factors become significant (leading to a logistic growth model) or other underlying assumptions of the exponential growth model, such as continuity or instantaneous feedback, break down.
The logistic distribution arises as limit distribution of a finite-velocity damped random motion described by a telegraph process in which the random times between consecutive velocity changes have independent exponential distributions with linearly increasing parameters.
Logistic function for the mathematical model used in Population dynamics that adjusts growth rate based on how close it is to the maximum a system can support; Albert Allen Bartlett – a leading proponent of the Malthusian Growth Model; Exogenous growth model – related growth model from economics; Growth theory – related ideas from economics
In logistic populations however, the intrinsic growth rate, also known as intrinsic rate of increase (r) is the relevant growth constant. Since generations of reproduction in a geometric population do not overlap (e.g. reproduce once a year) but do in an exponential population, geometric and exponential populations are usually considered to be ...
The logistic growth curve is initially very similar to the exponential growth curve. When population density is low, individuals are free from competition and can grow rapidly. However, as the population reaches its maximum (the carrying capacity), intraspecific competition becomes fiercer and the per capita growth rate slows until the ...
The logistic function can be calculated efficiently by utilizing type III Unums. [ 8 ] An hierarchy of sigmoid growth models with increasing complexity (number of parameters) was built [ 9 ] with the primary goal to re-analyze kinetic data, the so called N-t curves, from heterogeneous nucleation experiments, [ 10 ] in electrochemistry .
Asymptotically, bounded growth approaches a fixed value. This contrasts with exponential growth, which is constantly increasing at an accelerating rate, and therefore approaches infinity in the limit. Examples of bounded growth include the logistic function, the Gompertz function, and a simple modified exponential function like y = a + be gx. [1]