enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Galilean transformation - Wikipedia

    en.wikipedia.org/wiki/Galilean_transformation

    The Galilean symmetries can be uniquely written as the composition of a rotation, a translation and a uniform motion of spacetime. [6] Let x represent a point in three-dimensional space, and t a point in one-dimensional time. A general point in spacetime is given by an ordered pair (x, t). A uniform motion, with velocity v, is given by

  3. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative to the frame until acted upon by external forces. In such a frame, the laws of nature can be ...

  4. Galilean invariance - Wikipedia

    en.wikipedia.org/wiki/Galilean_invariance

    Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer below the deck would not be able to tell whether the ...

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Theory of impetus - Wikipedia

    en.wikipedia.org/wiki/Theory_of_impetus

    Aristotelian physics is the form of natural philosophy described in the works of the Greek philosopher Aristotle (384–322 BC). In his work Physics, Aristotle intended to establish general principles of change that govern all natural bodies, both living and inanimate, celestial and terrestrial – including all motion, quantitative change, qualitative change, and substantial change.

  7. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    In this example the time measured in the frame on the vehicle, t, is known as the proper time. The proper time between two events - such as the event of light being emitted on the vehicle and the event of light being received on the vehicle - is the time between the two events in a frame where the events occur at the same location.

  8. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    During the Apollo 15 mission in 1971, astronaut David Scott showed that Galileo was right: acceleration is the same for all bodies subject to gravity on the Moon, even for a hammer and a feather. Three main forms of the equivalence principle are in current use: weak (Galilean), Einsteinian, and strong.

  9. Galilean electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Galilean_electromagnetism

    Galilean electromagnetism is a formal electromagnetic field theory that is consistent with Galilean invariance.Galilean electromagnetism is useful for describing the electric and magnetic fields in the vicinity of charged bodies moving at non-relativistic speeds relative to the frame of reference.