enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Galilean transformation - Wikipedia

    en.wikipedia.org/wiki/Galilean_transformation

    The Galilean symmetries can be uniquely written as the composition of a rotation, a translation and a uniform motion of spacetime. [6] Let x represent a point in three-dimensional space, and t a point in one-dimensional time. A general point in spacetime is given by an ordered pair (x, t). A uniform motion, with velocity v, is given by

  3. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative to the frame until acted upon by external forces. In such a frame, the laws of nature can be ...

  4. Galilean invariance - Wikipedia

    en.wikipedia.org/wiki/Galilean_invariance

    Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer below the deck would not be able to tell whether the ...

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Moving magnet and conductor problem - Wikipedia

    en.wikipedia.org/wiki/Moving_magnet_and...

    An overriding requirement on the descriptions in different frameworks is that they be consistent.Consistency is an issue because Newtonian mechanics predicts one transformation (so-called Galilean invariance) for the forces that drive the charges and cause the current, while electrodynamics as expressed by Maxwell's equations predicts that the fields that give rise to these forces transform ...

  7. Relativity of simultaneity - Wikipedia

    en.wikipedia.org/wiki/Relativity_of_simultaneity

    The dotted horizontal line represents the set of points regarded as simultaneous with the origin by a stationary observer. This diagram is drawn using the (x, t) coordinates of the stationary observer, and is scaled so that the speed of light is one, i.e., so that a ray of light would be represented by a line with a 45° angle from the x axis.

  8. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    During the Apollo 15 mission in 1971, astronaut David Scott showed that Galileo was right: acceleration is the same for all bodies subject to gravity on the Moon, even for a hammer and a feather. Three main forms of the equivalence principle are in current use: weak (Galilean), Einsteinian, and strong.

  9. Theory of impetus - Wikipedia

    en.wikipedia.org/wiki/Theory_of_impetus

    Aristotelian physics is the form of natural philosophy described in the works of the Greek philosopher Aristotle (384–322 BC). In his work Physics, Aristotle intended to establish general principles of change that govern all natural bodies, both living and inanimate, celestial and terrestrial – including all motion, quantitative change, qualitative change, and substantial change.