Search results
Results from the WOW.Com Content Network
The complete structure of the eukaryotic 80S ribosome from the yeast Saccharomyces cerevisiae was obtained by crystallography at 3.0 A resolution. [18] These structures reveal the precise architecture of eukaryote-specific elements, their interaction with the universally conserved core, and all eukaryote-specific bridges between the two ...
The 23S ribosomal RNA is composed of six domains forming a complex network of molecular interactions. A central single-stranded region connects all of the domains through base-pairing of the two halves, forming Helix 26a.
[9] [10] 5S tandem repeat sequences in several Drosophila were compared with each other; the result revealed that insertions and deletions occurred frequently between species and often flanked by conserved sequences. [11] They could occur by slippage of the newly synthesized strand during DNA replication or by gene conversion. [11]
The 5S ribosomal RNA (5S rRNA) is an approximately 120 nucleotide-long ribosomal RNA molecule with a mass of 40 kDa.It is a structural and functional component of the large subunit of the ribosome in all domains of life (bacteria, archaea, and eukaryotes), with the exception of mitochondrial ribosomes of fungi and animals.
Ribosomes are the macromolecular machines that are responsible for mRNA translation into proteins. The eukaryotic ribosome, also called the 80S ribosome, is made up of two subunits – the large 60S subunit (which contains the 25S [in plants] or 28S [in mammals], 5.8S, and 5S rRNA and 46 ribosomal proteins) and a small 40S subunit (which contains the 18S rRNA and 33 ribosomal proteins). [6]
Light micrograph of a moss's leaf cells at 400X magnification. The following outline is provided as an overview of and topical guide to cell biology: . Cell biology – A branch of biology that includes study of cells regarding their physiological properties, structure, and function; the organelles they contain; interactions with their environment; and their life cycle, division, and death.
The general molecular structure of the ribosome has been known since the early 1970s. In the early 2000s, the structure has been achieved at high resolutions, of the order of a few ångströms. The first papers giving the structure of the ribosome at atomic resolution were published almost simultaneously in late 2000.
Ribosome profiling provides valuable insights into translation dynamics, revealing the complex interplay between gene sequence, mRNA structure, and translation regulation. Expanding on this concept, a more recent development is single-cell ribosome profiling, a technique that allows us to study the translation process at the resolution of ...