Search results
Results from the WOW.Com Content Network
In order to increase the calculation speed for viscosity calculations based on CS theory, which is important in e.g. compositional reservoir simulations, while keeping the accuracy of the CS method, Pedersen et al. (1984, 1987, 1989) [17] [18] [2] proposed a CS method that uses a simple (or conventional) CS formula when calculating the reduced ...
The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.
Therefore, gas volume may alternatively be expressed excluding the humidity content: V d (volume dry). This fraction more accurately follows the ideal gas law. On the contrary, V s (volume saturated) is the volume a gas mixture would have if humidity was added to it until saturation (or 100% relative humidity).
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
Their intercepts with the dashed lines show that when the volume increases 8 (2³) times, the surface area increases 4 (2²) times. The surface-area-to-volume ratio or surface-to-volume ratio (denoted as SA:V, SA/V, or sa/vol) is the ratio between surface area and volume of an object or collection of objects.
Scratches, represented by triangular-shaped grooves, make the surface area greater. Specific surface area (SSA) is a property of solids defined as the total surface area (SA) of a material per unit mass, [1] (with units of m 2 /kg or m 2 /g). Alternatively, it may be defined as SA per solid or bulk volume [2] [3] (units of m 2 /m 3 or m −1).
From the equation above, we need to know the area of contact and the velocity gradient. Think of the lamina as a ring of radius r, thickness dr, and length Δx. The area of contact between the lamina and the faster one is simply the surface area of the cylinder: A = 2πr Δx. We don't know the exact form for the velocity of the liquid within ...
The atmospheric pressure is roughly equal to the sum of partial pressures of constituent gases – oxygen, nitrogen, argon, water vapor, carbon dioxide, etc.. In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. [1]