Search results
Results from the WOW.Com Content Network
In statistics and econometrics, cross-sectional data is a type of data collected by observing many subjects (such as individuals, firms, countries, or regions) at a single point or period of time. Analysis of cross-sectional data usually consists of comparing the differences among selected subjects, typically with no regard to differences in time.
where (comparing a black and white population, for example): a i = the population of group A in the i th area, e.g. census tract A = the total population in group A in the large geographic entity for which the index of dissimilarity is being calculated. b i = the population of group B in the i th area
The uniform distribution or rectangular distribution on [a,b], where all points in a finite interval are equally likely, is a special case of the four-parameter Beta distribution. The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1].
In statistics, the concept of the shape of a probability distribution arises in questions of finding an appropriate distribution to use to model the statistical properties of a population, given a sample from that population. The shape of a distribution may be considered either descriptively, using terms such as "J-shaped", or numerically ...
Before starting a download of a large file, check the storage device to ensure its file system can support files of such a large size, check the amount of free space to ensure that it can hold the downloaded file, and make sure the device(s) you'll use the storage with are able to read your chosen file system.
The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable. If the conditional distribution of Y {\displaystyle Y} given X {\displaystyle X} is a continuous distribution , then its probability density function is known as the ...
It is a weighted average of a prior average m and the sample average. When the x i {\displaystyle x_{i}} are binary values 0 or 1, m can be interpreted as the prior estimate of a binomial probability with the Bayesian average giving a posterior estimate for the observed data.
Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.