Search results
Results from the WOW.Com Content Network
Modalities applied to measurement of ejection fraction is an emerging field of medical mathematics and subsequent computational applications. The first common measurement method is echocardiography, [7] [8] although cardiac magnetic resonance imaging (MRI), [8] [9] cardiac computed tomography, [8] [9] ventriculography and nuclear medicine (gated SPECT and radionuclide angiography) [8] [10 ...
Tidal volume: that volume of air moved into or out of the lungs in 1 breath (TV indicates a subdivision of the lung; when tidal volume is precisely measured, as in gas exchange calculation, the symbol TV or V T is used.) RV: Residual volume: the volume of air remaining in the lungs after a maximal exhalation: ERV
First, the change in volume of the chest is computed. The initial pressure of the box times its volume is considered equal to the known pressure after expansion times the unknown new volume. Once the new volume is found, the original volume minus the new volume is the change in volume in the box and also the change in volume in the chest.
Functional residual capacity (FRC) is the volume of air present in the lungs at the end of passive expiration. [1] At FRC, the opposing elastic recoil forces of the lungs and chest wall are in equilibrium and there is no exertion by the diaphragm or other respiratory muscles.
Tidal volume: that volume of air moved into or out of the lungs during quiet breathing (VT indicates a subdivision of the lung; when tidal volume is precisely measured, as in gas exchange calculation, the symbol TV or V T is used.) FRC: Functional residual capacity: the volume in the lungs at the end-expiratory position: RV/TLC%
V also is a volume, expressed in mL or L. So the ratio of K × t / V is a so-called "dimensionless ratio" and can be thought of as a multiple of the volume of plasma cleared of urea divided by the distribution volume of urea. When Kt/V = 1.0, a volume of blood equal to the distribution volume of urea has been completely cleared of urea.
where EBV is the estimated blood volume; 70 mL/kg was used in this model and H i (initial hematocrit) is the patient's initial hematocrit. From the equation above it is clear that the volume of blood removed during the ANH to the H m is the same as the BL s. How much blood is to be removed is usually based on the weight, not the volume.
Minute ventilation (or respiratory minute volume or minute volume) is the volume of gas inhaled (inhaled minute volume) or exhaled (exhaled minute volume) from a person's lungs per minute. It is an important parameter in respiratory medicine due to its relationship with blood carbon dioxide levels .