enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric operands.

  3. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]

  4. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  5. Operators in C and C++ - Wikipedia

    en.wikipedia.org/wiki/Operators_in_C_and_C++

    For example, (a > 0 and not flag) and (a > 0 && !flag) specify the same behavior. As another example, the bitand keyword may be used to replace not only the bitwise-and operator but also the address-of operator, and it can be used to specify reference types (e.g., int bitand ref = n ).

  6. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    [1] [2] All functions use floating-point numbers in one manner or another. Different C standards provide different, albeit backwards-compatible, sets of functions. Most of these functions are also available in the C++ standard library, though in different headers (the C headers are included as well, but only as a deprecated compatibility feature).

  7. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    5 is halved (2.5) and 6 is doubled (12). The fractional portion is discarded (2.5 becomes 2). The figure in the left column (2) is even, so the figure in the right column (12) is discarded. 2 is halved (1) and 12 is doubled (24). All not-scratched-out values are summed: 3 + 6 + 24 = 33. The method works because multiplication is distributive, so:

  8. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    A primitive root modulo m exists if and only if m is equal to 2, 4, p k or 2p k, where p is an odd prime number and k is a positive integer. If a primitive root modulo m exists, then there are exactly φ ( φ ( m )) such primitive roots, where φ is the Euler's totient function.

  9. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    x 1 = x; x 2 = x 2 for i = k - 2 to 0 do if n i = 0 then x 2 = x 1 * x 2; x 1 = x 1 2 else x 1 = x 1 * x 2; x 2 = x 2 2 return x 1 The algorithm performs a fixed sequence of operations ( up to log n ): a multiplication and squaring takes place for each bit in the exponent, regardless of the bit's specific value.