Search results
Results from the WOW.Com Content Network
The concept of a mixed-strategy equilibrium was introduced by John von Neumann and Oskar Morgenstern in their 1944 book The Theory of Games and Economic Behavior, but their analysis was restricted to the special case of zero-sum games. They showed that a mixed-strategy Nash equilibrium will exist for any zero-sum game with a finite set of ...
Mixed strategy Nash equilibria are equilibria where at least one player is playing a mixed strategy. While Nash proved that every finite game has a Nash equilibrium, not all have pure strategy Nash equilibria. For an example of a game that does not have a Nash equilibrium in pure strategies, see Matching pennies.
Unlike the pure Nash equilibria, the mixed equilibrium is not an evolutionarily stable strategy (ESS). The mixed Nash equilibrium is also Pareto dominated by the two pure Nash equilibria (since the players will fail to coordinate with non-zero probability), a quandary that led Robert Aumann to propose the refinement of a correlated equilibrium.
The two pure strategy Nash equilibria are unfair; one player consistently does better than the other. The mixed strategy Nash equilibrium is inefficient: the players will miscoordinate with probability 13/25, leaving each player with an expected return of 6/5 (less than the payoff of 2 from each's less favored pure strategy equilibrium).
In game theory, a bimatrix game is a simultaneous game for two players in which each player has a finite number of possible actions. The name comes from the fact that the normal form of such a game can be described by two matrices - matrix describing the payoffs of player 1 and matrix describing the payoffs of player 2.
Each cell of the matrix shows the two players' payoffs, with Even's payoffs listed first. Matching pennies is used primarily to illustrate the concept of mixed strategies and a mixed strategy Nash equilibrium. [1] This game has no pure strategy Nash equilibrium since there is no pure strategy (heads or tails) that is a best response to a best ...
A Nash equilibrium is a strategy profile (a strategy profile specifies a strategy for every player, e.g. in the above prisoners' dilemma game (cooperate, defect) specifies that prisoner 1 plays cooperate and prisoner 2 plays defect) in which every strategy played by every agent (agent i) is a best response to every other strategy played by all the other opponents (agents j for every j≠i) .
Nash equilibrium strategies in this version of the game are a set of bivariate probability distributions: distributions over a set of possible resource allocations for each player, often referred to as Mixed Nash Equilibria (such as can be found in Paper-Rock-Scissors or Matching Pennies as much simpler examples).