Search results
Results from the WOW.Com Content Network
Applying the Mycielskian repeatedly, starting with the one-edge graph, produces a sequence of graphs M i = μ(M i−1), sometimes called the Mycielski graphs. The first few graphs in this sequence are the graph M 2 = K 2 with two vertices connected by an edge, the cycle graph M 3 = C 5 , and the Grötzsch graph M 4 with 11 vertices and 20 edges.
One can then prove that this smoothed sum is asymptotic to − + 1 / 12 + CN 2, where C is a constant that depends on f. The constant term of the asymptotic expansion does not depend on f: it is necessarily the same value given by analytic continuation, − + 1 / 12 . [1]
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
By the implicit function theorem, each choice defines a function; for the first one, the (maximal) domain is the interval [−2, 2] and the image is [−1, 1]; for the second one, the domain is [−2, ∞) and the image is [1, ∞); for the last one, the domain is (−∞, 2] and the image is (−∞, −1]. As the three graphs together form a ...
Plane curves can be represented in Cartesian coordinates (x, y coordinates) by any of three methods, one of which is the implicit equation given above. The graph of a function is usually described by an equation y = f ( x ) {\displaystyle y=f(x)} in which the functional form is explicitly stated; this is called an explicit representation.
The number of perfect matchings of the complete graph K n (with n even) is given by the double factorial (n – 1)!!. [12] The crossing numbers up to K 27 are known, with K 28 requiring either 7233 or 7234 crossings. Further values are collected by the Rectilinear Crossing Number project. [13] Rectilinear Crossing numbers for K n are
A graph is said to be k-factor-critical if every subset of n − k vertices has a perfect matching. Under this definition, a hypomatchable graph is 1-factor-critical. [13] Even more generally, a graph is (a,b)-factor-critical if every subset of n − k vertices has an r-factor, that is, it is the vertex set of an r-regular subgraph of the given ...
To decide if a graph has a Hamiltonian path, one would have to check each possible path in the input graph G. There are n! different sequences of vertices that might be Hamiltonian paths in a given n-vertex graph (and are, in a complete graph), so a brute force search algorithm that tests all possible sequences would be very slow.