enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Implicit function theorem - Wikipedia

    en.wikipedia.org/wiki/Implicit_function_theorem

    The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).

  3. Mycielskian - Wikipedia

    en.wikipedia.org/wiki/Mycielskian

    Applying the Mycielskian repeatedly, starting with the one-edge graph, produces a sequence of graphs M i = μ(M i−1), sometimes called the Mycielski graphs. The first few graphs in this sequence are the graph M 2 = K 2 with two vertices connected by an edge, the cycle graph M 3 = C 5 , and the Grötzsch graph M 4 with 11 vertices and 20 edges.

  4. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    One can then prove that this smoothed sum is asymptotic to ⁠ + 1 / 12 ⁠ + CN 2, where C is a constant that depends on f. The constant term of the asymptotic expansion does not depend on f: it is necessarily the same value given by analytic continuation, ⁠ + 1 / 12 ⁠. [1]

  5. Graph factorization - Wikipedia

    en.wikipedia.org/wiki/Graph_factorization

    If k is sufficiently large, it is known that G has to be 1-factorable: If k = 2n 1, then G is the complete graph K 2n, and hence 1-factorable (see above). If k = 2n 2, then G can be constructed by removing a perfect matching from K 2n. Again, G is 1-factorable. Chetwynd & Hilton (1985) show that if k ≥ 12n/7, then G is 1-factorable.

  6. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.

  7. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    The graph of a function on its own does not determine the codomain. It is common [3] to use both terms function and graph of a function since even if considered the same object, they indicate viewing it from a different perspective. Graph of the function () = over the interval [2,+3]. Also shown are the two real roots and the local minimum ...

  8. Factor-critical graph - Wikipedia

    en.wikipedia.org/wiki/Factor-critical_graph

    A graph is said to be k-factor-critical if every subset of n k vertices has a perfect matching. Under this definition, a hypomatchable graph is 1-factor-critical. [13] Even more generally, a graph is (a,b)-factor-critical if every subset of n k vertices has an r-factor, that is, it is the vertex set of an r-regular subgraph of the given ...

  9. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    To decide if a graph has a Hamiltonian path, one would have to check each possible path in the input graph G. There are n! different sequences of vertices that might be Hamiltonian paths in a given n-vertex graph (and are, in a complete graph), so a brute force search algorithm that tests all possible sequences would be very slow.