Ads
related to: topological algebra and its applications 4th edition ebook
Search results
Results from the WOW.Com Content Network
A topological algebra over a topological field is a topological vector space together with a bilinear multiplication :, (,) that turns into an algebra ...
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism , though usually most classify up to homotopy equivalence .
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
Algebra & Number Theory; Algebra Colloquium; Algebra i Logika; Algebra Universalis; Algebraic & Geometric Topology; Algebraic Combinatorics; American Journal of Mathematics; American Mathematical Monthly; Analysis and Applications; The Analyst, or, Mathematical Museum; Annales Academiae Scientiarum Fennicae. Mathematica; Annales de Gergonne ...
It was established in 1971 as General Topology and Its Applications, and renamed to its current title in 1980. The journal currently publishes 18 issues each year in one volume. It is indexed by Scopus, Mathematical Reviews, and Zentralblatt MATH. Its 2004–2008 MCQ was 0.38 and its 2020 impact factor was 0.617. [1]
This corresponds also to the period where homological algebra and category theory were introduced for the study of topological spaces, and largely supplanted combinatorial methods. More recently the term combinatorial topology has been revived for investigations carried out by treating topological objects as composed of pieces as in the older ...
Cardinal functions are widely used in topology as a tool for describing various topological properties. [4] [5] Below are some examples.(Note: some authors, arguing that "there are no finite cardinal numbers in general topology", [6] prefer to define the cardinal functions listed below so that they never take on finite cardinal numbers as values; this requires modifying some of the definitions ...
The algebra of continuous (real or complex) functions on a compact Hausdorff space is a commutative C*-algebra, and conversely by the Banach–Stone theorem one can recover the topology of the space from the algebraic properties of its algebra of continuous functions.
Ads
related to: topological algebra and its applications 4th edition ebook