enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    However, this does not account for the difference in number of students in each class (20 versus 30); hence the value of 85 does not reflect the average student grade (independent of class). The average student grade can be obtained by averaging all the grades, without regard to classes (add all the grades up and divide by the total number of ...

  3. Weighted median - Wikipedia

    en.wikipedia.org/wiki/Weighted_median

    The weighted median can be computed by sorting the set of numbers and finding the smallest set of numbers which sum to half the weight of the total weight. This algorithm takes (⁡) time. There is a better approach to find the weighted median using a modified selection algorithm. [1]

  4. Weight function - Wikipedia

    en.wikipedia.org/wiki/Weight_function

    The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability-weighted average of the values the function takes on for each possible value of the random variable.

  5. Inverse-variance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse-variance_weighting

    For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().

  6. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration.

  7. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    The degree of freedom, =, equals the number of observations n minus the number of fitted parameters m. In weighted least squares , the definition is often written in matrix notation as χ ν 2 = r T W r ν , {\displaystyle \chi _{\nu }^{2}={\frac {r^{\mathrm {T} }Wr}{\nu }},} where r is the vector of residuals, and W is the weight matrix, the ...

  8. Kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    Kernel average smoother example. The idea of the kernel average smoother is the following. For each data point X 0, choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than to X 0 (the closer to X 0 points get higher weights).

  9. WPGMA - Wikipedia

    en.wikipedia.org/wiki/WPGMA

    At each step, the nearest two clusters, say and , are combined into a higher-level cluster . Then, its distance to another cluster k {\displaystyle k} is simply the arithmetic mean of the average distances between members of k {\displaystyle k} and i {\displaystyle i} and k {\displaystyle k} and j {\displaystyle j} :