Search results
Results from the WOW.Com Content Network
In DACs, it is a measure of the deviation between the ideal output value and the actual measured output value for a certain input code. In ADCs, it is the deviation between the ideal input threshold value and the measured threshold level of a certain output code. This measurement is performed after offset and gain errors have been compensated. [1]
Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages
Lur'e problem block diagram. An early nonlinear feedback system analysis problem was formulated by A. I. Lur'e.Control systems described by the Lur'e problem have a forward path that is linear and time-invariant, and a feedback path that contains a memory-less, possibly time-varying, static nonlinearity.
Differential nonlinearity (acronym DNL) is a commonly used measure of performance in digital-to-analog (DAC) and analog-to-digital (ADC) converters. It is a term describing the deviation between two analog values corresponding to adjacent input digital values.
The degree of nonlinearity of the phase indicates the deviation of the group delay from a constant value. The differential group delay is the difference in propagation time between the two eigenmodes X and Y polarizations. Consider two eigenmodes that are the 0° and 90° linear polarization states. If the state of polarization of the input ...
Departure of such a variable from its setpoint is one basis for error-controlled regulation using negative feedback for automatic control. [3] A setpoint can be any physical quantity or parameter that a control system seeks to regulate, such as temperature, pressure, flow rate, position, speed, or any other measurable attribute.
System identification is a method of identifying or measuring the mathematical model of a system from measurements of the system inputs and outputs. The applications of system identification include any system where the inputs and outputs can be measured and include industrial processes, control systems, economic data, biology and the life sciences, medicine, social systems and many more.
Inconsistencies of atmospheric conditions affect the speed of the GPS signals as they pass through the Earth's atmosphere, especially the ionosphere.Correcting these errors is a significant challenge to improving GPS position accuracy.