enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data lake - Wikipedia

    en.wikipedia.org/wiki/Data_lake

    Data lakehouses are a hybrid approach that can ingest a variety of raw data formats like a data lake, yet provide ACID transactions and enforce data quality like a data warehouse. [ 14 ] [ 15 ] A data lakehouse architecture attempts to address several criticisms of data lakes by adding data warehouse capabilities such as transaction support ...

  3. Kimball lifecycle - Wikipedia

    en.wikipedia.org/wiki/Kimball_lifecycle

    The Kimball lifecycle is a methodology for developing data warehouses, and has been developed by Ralph Kimball and a variety of colleagues. The methodology "covers a sequence of high level tasks for the effective design, development and deployment" of a data warehouse or business intelligence system. [1]

  4. Data mart - Wikipedia

    en.wikipedia.org/wiki/Data_mart

    A data mart is a structure/access pattern specific to data warehouse environments. The data mart is a subset of the data warehouse that focuses on a specific business line, department, subject area, or team. [1] Whereas data warehouses have an enterprise-wide depth, the information in data marts pertains to a single department.

  5. Data engineering - Wikipedia

    en.wikipedia.org/wiki/Data_engineering

    Data engineering refers to the building of systems to enable the collection and usage of data. This data is usually used to enable subsequent analysis and data science, which often involves machine learning. [1] [2] Making the data usable usually involves substantial compute and storage, as well as data processing.

  6. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  7. Data warehouse - Wikipedia

    en.wikipedia.org/wiki/Data_warehouse

    Data Warehouse and Data mart overview, with Data Marts shown in the top right. In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is a core component of business intelligence. [1] Data warehouses are central repositories of data integrated from ...

  8. Data warehouse automation - Wikipedia

    en.wikipedia.org/wiki/Data_warehouse_automation

    Data warehouse automation (DWA) refers to the process of accelerating and automating the data warehouse development cycles, while assuring quality and consistency. DWA is believed to provide automation of the entire lifecycle of a data warehouse, from source system analysis to testing to documentation. It helps improve productivity, reduce cost ...

  9. BigQuery - Wikipedia

    en.wikipedia.org/wiki/BigQuery

    BigQuery is a managed, serverless data warehouse product by Google, offering scalable analysis over large quantities of data. It is a Platform as a Service that supports querying using a dialect of SQL. It also has built-in machine learning capabilities. BigQuery was announced in May 2010 and made generally available in November 2011.