Search results
Results from the WOW.Com Content Network
The k shortest path routing problem is a generalization of the shortest path routing problem in a given network. It asks not only about a shortest path but also about next k−1 shortest paths (which may be longer than the shortest path). A variation of the problem is the loopless k shortest paths.
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
Problem 2. Find the path of minimum total length between two given nodes P and Q. We use the fact that, if R is a node on the minimal path from P to Q, knowledge of the latter implies the knowledge of the minimal path from P to R. is a paraphrasing of Bellman's Principle of Optimality in the context of the shortest path problem.
Branch and bound (BB, B&B, or BnB) is a method for solving optimization problems by breaking them down into smaller sub-problems and using a bounding function to eliminate sub-problems that cannot contain the optimal solution. It is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical ...
The maximum flow problem can be seen as a special case of more complex network flow problems, such as the circulation problem. The maximum value of an s-t flow (i.e., flow from source s to sink t) is equal to the minimum capacity of an s-t cut (i.e., cut severing s from t) in the network, as stated in the max-flow min-cut theorem .
[24]: 3 The skip number 1 at node 0 corresponds to the position 1 in the binary encoded ASCII where the leftmost bit differed in the key set . [ 24 ] : 3-4 The skip number is crucial for search, insertion, and deletion of nodes in the Patricia tree, and a bit masking operation is performed during every iteration.
When we access a vertex v, the preferred path of the represented tree is changed to a path from the root R of the represented tree to the node v. If a node on the access path previously had a preferred child u, and the path now goes to child w, the old preferred edge is deleted (changed to a path-parent pointer), and the new path now goes ...
A few variants of the Chinese Postman Problem have been studied and shown to be NP-complete. [10] The windy postman problem is a variant of the route inspection problem in which the input is an undirected graph, but where each edge may have a different cost for traversing it in one direction than for traversing it in the other direction.