enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    1-planarity [1] 3-dimensional matching [2] [3]: SP1 Bandwidth problem [3]: GT40 Bipartite dimension [3]: GT18 Capacitated minimum spanning tree [3]: ND5 Route inspection problem (also called Chinese postman problem) for mixed graphs (having both directed and undirected edges). The program is solvable in polynomial time if the graph has all ...

  3. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  4. Johnson–Lindenstrauss lemma - Wikipedia

    en.wikipedia.org/wiki/Johnson–Lindenstrauss_lemma

    [Note 2] Also, the lemma is tight up to a constant factor, i.e. there exists a set of points of size N that needs dimension (⁡ ()) in order to preserve the distances between all pairs of points within a factor of (). [3] [4]

  5. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A path graph or linear graph of order n ≥ 2 is a graph in which the vertices can be listed in an order v 1, v 2, …, v n such that the edges are the {v i, v i+1} where i = 1, 2, …, n − 1. Path graphs can be characterized as connected graphs in which the degree of all but two vertices is 2 and the degree of the two remaining vertices is 1.

  6. Table of simple cubic graphs - Wikipedia

    en.wikipedia.org/wiki/Table_of_simple_cubic_graphs

    The number of connected simple cubic graphs on 4, 6, 8, 10, ... vertices is 1, 2, 5, 19, ... (sequence A002851 in the OEIS).A classification according to edge connectivity is made as follows: the 1-connected and 2-connected graphs are defined as usual.

  7. Complete graph - Wikipedia

    en.wikipedia.org/wiki/Complete_graph

    The complement graph of a complete graph is an empty graph. If the edges of a complete graph are each given an orientation, the resulting directed graph is called a tournament. K n can be decomposed into n trees T i such that T i has i vertices. [6] Ringel's conjecture asks if the complete graph K 2n+1 can be decomposed into copies of any tree ...

  8. Cubic graph - Wikipedia

    en.wikipedia.org/wiki/Cubic_graph

    According to Brooks' theorem every connected cubic graph other than the complete graph K 4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K 4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.

  9. Generalized Petersen graph - Wikipedia

    en.wikipedia.org/wiki/Generalized_Petersen_graph

    G(n, k) is a Cayley graph if and only if k 21 (mod n). G(n, k) is hypohamiltonian when n is congruent to 5 modulo 6 and k = 2, n − 2, or (n ± 1)/2 (these four choices of k lead to isomorphic graphs). It is also non-Hamiltonian when n is divisible by 4, at least equal to 8, and k = n/2.