Search results
Results from the WOW.Com Content Network
This reaction is similar to nucleophilic aliphatic substitution where the reactant is a nucleophile rather than an electrophile. The four possible electrophilic aliphatic substitution reaction mechanisms are S E 1, S E 2(front), S E 2(back) and S E i (Substitution Electrophilic), which are also similar to the nucleophile counterparts S N 1 and ...
Electrophilic aromatic substitution (S E Ar) is an organic reaction in which an atom that is attached to an aromatic system (usually hydrogen) is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration , aromatic halogenation , aromatic sulfonation , alkylation Friedel–Crafts ...
Substitution reactions are of prime importance in organic chemistry. Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is ...
EDGs and EWGs also determine the positions (relative to themselves) on the aromatic ring where substitution reactions are most likely to take place. Electron donating groups are generally ortho/para directors for electrophilic aromatic substitutions, while electron withdrawing groups (except the halogens) are generally meta directors. The ...
In organic chemistry, aromatic sulfonation is an reaction in which a hydrogen atom on an arene is replaced by a sulfonic acid (−SO 2 OH) group. Together with nitration and chlorination, aromatic sulfonation is a widely used electrophilic aromatic substitutions. [1] Aryl sulfonic acids are used as detergents, dye, and drugs.
In organic chemistry, an azo coupling is an reaction between a diazonium compound (R−N≡N +) and another aromatic compound that produces an azo compound (R−N=N−R’).In this electrophilic aromatic substitution reaction, the aryldiazonium cation is the electrophile, and the activated carbon (usually from an arene, which is called coupling agent), serves as a nucleophile.
In organic chemistry, an electrophilic aromatic halogenation is a type of electrophilic aromatic substitution.This organic reaction is typical of aromatic compounds and a very useful method for adding substituents to an aromatic system.
Electrophilic aromatic substitution is famously affected by EWGs. The effect is transmitted by inductive and resonance effects. [1] Benzene with an EWG typically undergoes electrophilic substitution at meta positions. Overall the rates are diminished. thus EWGs are called deactivating. [citation needed]