Search results
Results from the WOW.Com Content Network
The Fano plane is an example of an (n 3)-configuration, that is, a set of n points and n lines with three points on each line and three lines through each point. The Fano plane, a (7 3)-configuration, is unique and is the smallest such configuration. [11]
The Fano plane. This particular projective plane is sometimes called the Fano plane. If any of the lines is removed from the plane, along with the points on that line, the resulting geometry is the affine plane of order 2. The Fano plane is called the projective plane of order 2 because it is unique (up to
The Fano plane, the projective plane over the field with two elements, is one of the simplest objects in Galois geometry.. Galois geometry (named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois field). [1]
The Fano plane, discussed below, is denoted by PG(2, 2). The third example above is the projective plane PG(2, 3). The Fano plane. Points are shown as dots; lines are shown as lines or circles. The Fano plane is the projective plane arising from the field of two elements. It is the smallest projective plane, with only seven points and seven lines.
The Fano plane is the projective plane with the fewest points and lines. The smallest 2-dimensional projective geometry (that with the fewest points) is the Fano plane, which has 3 points on every line, with 7 points and 7 lines in all, having the following collinearities:
The Fano plane is a Steiner triple system S(2,3,7). The blocks are the 7 lines, each containing 3 points. Every pair of points belongs to a unique line. In combinatorial mathematics, a Steiner system (named after Jakob Steiner) is a type of block design, specifically a t-design with λ = 1 and t = 2 or (recently) t ≥ 2.
The Airbus A350 was landing at Tokyo’s Haneda airport when it was in collision with a much smaller plane working for the Japanese coastguard in earthquake relief. Tragically, five of the six ...
However, we have just seen that the Todd genus of a Fano manifold must equal 1. Since this would also apply to the manifold's universal cover, and since the Todd genus is multiplicative under finite covers, it follows that any Fano manifold is simply connected. A much easier fact is that every Fano variety has Kodaira dimension −∞.