Search results
Results from the WOW.Com Content Network
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
The graph of a real single-variable quadratic function is a parabola. If a quadratic function is equated with zero, then the result is a quadratic equation . The solutions of a quadratic equation are the zeros (or roots ) of the corresponding quadratic function, of which there can be two, one, or zero.
The solutions of the quadratic equation + + = may be deduced from the graph of the quadratic function = + +, which is a parabola. If the parabola intersects the x -axis in two points, there are two real roots , which are the x -coordinates of these two points (also called x -intercept).
While a parabolic arch may resemble a catenary arch, a parabola is a quadratic function while a catenary is the hyperbolic cosine, cosh(x), a sum of two exponential functions. One parabola is f(x) = x 2 + 3x − 1, and hyperbolic cosine is cosh(x) = e x + e −x / 2 . The curves are unrelated.
In mathematics, a cuspidal cubic or semicubical parabola is an algebraic plane curve that has an implicit equation of the form y 2 − a 2 x 3 = 0 {\displaystyle y^{2}-a^{2}x^{3}=0} (with a ≠ 0 ) in some Cartesian coordinate system .
For linear and quadratic functions, the graph of any function can be obtained from the graph of the parent function by simple translations and stretches parallel to the axes. For example, the graph of y = x 2 − 4x + 7 can be obtained from the graph of y = x 2 by translating +2 units along the X axis and +3 units along Y axis. This is because ...
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
This page was last edited on 2 December 2024, at 16:34 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.